Optimistic Shannon coding theorems for arbitrary single-user systems

نویسندگان

  • Po-Ning Chen
  • Fady Alajaji
چکیده

The conventional definitions of the source coding rate and of channel capacity require the existence of reliable codes for all sufficiently large block lengths. Alternatively, if it is required that good codes exist for infinitely many block lengths, then optimistic definitions of source coding rate and channel capacity are obtained. In this work, formulas for the optimistic minimum achievable fixedlength source coding rate and the minimum "-achievable source coding rate for arbitrary finite-alphabet sources are established. The expressions for the optimistic capacity and the optimistic "-capacity of arbitrary single-user channels are also provided. The expressions of the optimistic source coding rate and capacity are examined for the class of information stable sources and channels, respectively. Finally, examples for the computation of optimistic capacity are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lecture Notes on Information Theory Volume I by Po

Preface The reliable transmission of information bearing signals over a noisy communication channel is at the heart of what we call communication. Information theory—founded by Claude E. Shannon in 1948—provides a mathematical framework for the theory of communication; it describes the fundamental limits to how efficiently one can encode information and still be able to recover it with negligib...

متن کامل

Robust Distributed Source Coding with Arbitrary Number of Encoders and Practical Code Design Technique

The robustness property can be added to DSC system at the expense of reducing performance, i.e., increasing the sum-rate. The aim of designing robust DSC schemes is to trade off between system robustness and compression efficiency. In this paper, after deriving an inner bound on the rate–distortion region for the quadratic Gaussian MDC based RDSC system with two encoders, the structure of...

متن کامل

Practical Physical Layer Techniques for 4 G Systems & Beyond

We quantify cell-wide mean throughputs of single-input-single-output (SISO) and multiple-inputmultiple-output (MIMO)-based cellular systems which employ multi-user diversity (MuD). Our study considers several practical and useful system-level design dimensions, including: number of transmit/receive antennas; antenna-pattern (omni-directional or sectorized); degree of error-protection (Shannon c...

متن کامل

System-Level Impact of Multi-User Diversity in SISO and MIMO-based Cellular Systems

We quantify cell-wide mean throughputs of single-input-single-output (SISO) and multiple-inputmultiple-output (MIMO)-based cellular systems which employ multi-user diversity (MuD). Our study considers several practical and useful system-level design dimensions, including: number of transmit/receive antennas; antenna-pattern (omni-directional or sectorized); degree of error-protection (Shannon c...

متن کامل

The Shannon-McMillan Theorem for Ergodic Quantum Lattice Systems

We formulate and prove a quantum Shannon-McMillan theorem. The theorem demonstrates the significance of the von Neumann entropy for translation invariant ergodic quantum spin systems on Z-lattices: the entropy gives the logarithm of the essential number of eigenvectors of the system on large boxes. The one-dimensional case covers quantum information sources and is basic for coding theorems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1999